
How Autovacuum Goes Wrong
And can we please make it stop doing that?

Robert Haas
VP, Chief Database Scientist
EDB



© EnterpriseDB Corporation 2024 — All Rights Reserved.

Agenda

• Overview of Failure Modes
• Cost Limits
• VACUUM Slow or Stuck
• VACUUM Spinning
• VACUUM Skipped or Starvation
• Conclusion

2



© EnterpriseDB Corporation 2024 — All Rights Reserved.

Overview of Failure Modes

• Slow. Making forward progress, but not quickly enough.

• Stuck. Making no forward progress.

• Spinning. Running repeatedly on the same table but not accomplish anything 
useful.

• Skipped. autovacuum thinks that vacuuming is not needed, even though it is.

• Starvation. autovacuum can’t vacuum everything that needs vacuuming.

3



Cost Limits



© EnterpriseDB Corporation 2024 — All Rights Reserved.

Cost Limits: The Problem

• autovacuum_vacuum_cost_limit and related settings are intended to 
prevent autovacuum from consuming too many resources.

• However, these resource limits can prevent autovacuum from getting enough 
vacuuming done.

• The amount of vacuum work that needs to be done depends on the size of 
the database, the rate at which dead tuples are being created, and the rates of 
XID and MXID consumption - but the default is a constant.

5



© EnterpriseDB Corporation 2024 — All Rights Reserved.

Cost Limits: The Consequences

• Cost limit problems are the single most frequent cause of “vacuum slow” 
problems and of “vacuum starvation” problems.

• Users often mistakenly believe that raising autovacuum_max_workers will 
fix things. It often does the opposite - and it’s never the first thing to change.

• In v12, we reduced the cost delay by 10x, which is equivalent to increasing the 
cost limit by 10x. This helped a lot.

• “Emergency mode” disregards the cost limit, but too late.

6



© EnterpriseDB Corporation 2024 — All Rights Reserved.

Cost Limits: Intuition

• Consider the “backlog” of tables which autovacuum would think need to be 
vacuumed if it looked at them, but it hasn’t looked at them yet.

• If the backlog is growing over time, the cost limit isn’t high enough, and 
possibly we also need more workers.

• We don’t really want to wait for the backlog to start growing: we want to get 
ahead of the problem.

7



© EnterpriseDB Corporation 2024 — All Rights Reserved.

Cost Limits: Solution Sketch

• Have a set of autovacuum workers that connect to each database and gather 
information:

− Keep track of which tables need vacuuming now.
− Estimate when the rest of the tables will need vacuuming in the future.
− Estimate how long each table will take to vacuum when we process it.

• If the backlog is large, raised the cost limit or the worker count to try to bring 
the situation under control.

• If the backlog is small now but will grow sharply in the near future, get a head 
start.

8



© EnterpriseDB Corporation 2024 — All Rights Reserved.

Prioritization

• The same information that we use to track the vacuum backlog could also be 
used for prioritization, so that we try to do more important vacuums first.

• XID wraparound > MXID wraparound > bloat, but only in the limit. Being 
slightly beyond some XID cutoff is not more important than unlimited bloat.

• Prioritization seems significantly less important than cost limit adjustment, 
because we really need to do all the vacuuming.

− If the table doesn’t need to be vacuumed right now for good system performance, we 
shouldn’t vacuum it at all until that changes.

9



VACUUM Slow or Stuck



© EnterpriseDB Corporation 2024 — All Rights Reserved.

VACUUM Slow or Stuck: Causes

• Everything is fine, just be patient.

• Cost limit too low.

• Waiting for some other PostgreSQL process.

• Slow disk.

• Corrupted indexes.

11



© EnterpriseDB Corporation 2024 — All Rights Reserved.

VACUUM Slow or Stuck: Fixes

• Waiting for some other PostgreSQL process.
− Kill the other process.
− Doing this automatically might be possible in some cases, but sounds a bit scary.

• Slow disk.
− Get a new disk.
− Not much to do in software.

• Corrupted indexes.
− DROP or REINDEX.
− Even if we detect this automatically and error out, it would just turn this into the “spinning” 

case, unless we had some mechanism to delay retrying.

12



VACUUM Spinning



© EnterpriseDB Corporation 2024 — All Rights Reserved.

VACUUM Spinning: Causes

• Everything is fine, you just have a lot of write activity in that table.

• VACUUM is failing with an ERROR and autovacuum keeps retrying it.

• Autovacuum keeps thinking the table needs vacuuming, but when VACUUM 
actually processes it, nothing gets any better.

14



© EnterpriseDB Corporation 2024 — All Rights Reserved.

VACUUM Spinning: Solutions

• VACUUM is failing with an ERROR and autovacuum keeps retrying it.
− Fix whatever is causing the error.
− Can’t really do anything in the code.

• Autovacuum keeps thinking the table needs vacuuming, but when VACUUM 
actually processes it, nothing gets any better (“useless vacuuming”).

− By far the most common cause of this problem.
− Generally happens because something is holding back xmin, meaning that the old tuples are 

not yet dead, and thus not removable.

15



© EnterpriseDB Corporation 2024 — All Rights Reserved.

VACUUM Spinning: What’s holding back xmin?

• A long-running transaction (check pg_stat_activity) that needs to be 
killed.

• An unused replication slot (check pg_replication_slots) that needs to 
be dropped or reconnected.

• An old prepared transaction (check pg_prepared_xacts) that needs to be 
committed or aborted.

16



© EnterpriseDB Corporation 2024 — All Rights Reserved.

Useless Vacuuming: Dumbest Possible Fix

• If vacuuming the table does nothing, don’t do it again until xmin advances.

• We’ll still do at least one useless vacuum.

• Even if xmin advances, vacuuming might still be useless.

• Even if xmin advances and vacuuming is no longer useless, it might be nearly 
useless.

17



© EnterpriseDB Corporation 2024 — All Rights Reserved.

Useless Vacuuming: Smarter Fix?

• Find a way to answer this question: What is the next currently 
non-vacuumable XID such that, when it becomes vacuumable, we’ll be able to 
clean up a reasonable number of tuples?

• If we count the number of recently-dead tuples in each range of XIDs, we can 
answer this question well provided that we pick the right ranges.

• e.g. If we count recently dead tuples with XIDs 1001-2000, it might be that all 
the tuples in this table in this range have xmax = 1001, but we’ll wait for XID 
2000 to be vacuumable before doing anything.

18



VACUUM Starved or Skipped



© EnterpriseDB Corporation 2024 — All Rights Reserved.

Autovacuum Is Not Running VACUUM on My Table - Why?

• Starved: All autovacuum worker processes have been busy doing other things, 
and therefore your table is not being checked.

• Skipped: Autovacuum decides the table doesn’t need vacuuming so it doesn’t 
do anything.

• It’s usually easy to tell the difference by looking at the number of autovacuum 
workers in pg_stat_activity compared to autovacuum_max_workers, 
and how long they’ve been running.

20



© EnterpriseDB Corporation 2024 — All Rights Reserved.

VACUUM Starved: Causes

• Cost limit too low.

• Need more workers.

21



© EnterpriseDB Corporation 2024 — All Rights Reserved.

VACUUM Skipped: Causes

• Misconfiguration, e.g. autovacuum_enabled=false.

• Missing statistics, e.g. pg_stat_reset() or corrupted stats file.

• Large table with default scale factor.
− The new TID store may help, by preventing multiple index passes, which are very bad.
− However, waiting until we have terabytes of bloat in the table is probably not right.
− Possible code fix: Cap the result of the scale factor calculation, or grow sublinearly.

22



Conclusion



© EnterpriseDB Corporation 2024 — All Rights Reserved.

Triggers vs. Goals

• Autovacuum doesn’t try to ensure that operations finish at the right time, only 
that they start at the right time.

• Forces a very conservative value of autovacuum_freeze_max_age.

• May be part of why autovacuum_vacuum_scale_factor doesn’t work 
well on very large tables.

• Makes it hard to do proper prioritization.

24



© EnterpriseDB Corporation 2024 — All Rights Reserved.

Summary of Improvement Ideas

• Automatically tune the cost limit - and worker count - in response to pressure.

• Prioritization, maybe.

• Avoid useless vacuuming when something is holding back xmin.

• Rethink scale factor mechanism for large tables.

• Goal-based rather than trigger-based.

25



Thank You!
Any questions?


